Random Variables, Expectation, Distributions

CS 5960/6960: Nonparametric Methods
Tom Fletcher

January 21, 2009
Review
Random Variables

Definition

A **random variable** is a function defined on a probability space. In other words, if \((\Omega, \mathcal{F}, P)\) is a probability space, then a random variable is a function \(X : \Omega \rightarrow V\) for some set \(V\).

Note:

- A random variable is neither random nor a variable.
- We will deal with integer-valued \((V = \mathbb{Z})\) or real-valued \((V = \mathbb{R})\) random variables.
- Technically, random variables are *measurable* functions.
Dice Example

Let (Ω, \mathcal{F}, P) be the probability space for rolling a pair of dice, and let $X : \Omega \rightarrow \mathbb{Z}$ be the random variable that gives the sum of the numbers on the two dice. So,

$$X[(1, 2)] = 3, \quad X[(4, 4)] = 8, \quad X[(6, 5)] = 11$$
Even Simpler Example

Most of the time the random variable X will just be the identity function. For example, if the sample space is the real line, $\Omega = \mathbb{R}$, the identity function

$$X : \mathbb{R} \rightarrow \mathbb{R},$$

$$X(s) = s$$

is a random variable.
Defining Events via Random Variables

Setting a real-valued random variable to a value or range of values defines an event.

\[
[X = x] = \{ s \in \Omega : X(s) = x \}
\]

\[
[X < x] = \{ s \in \Omega : X(s) < x \}
\]

\[
a < X < b = \{ s \in \Omega : a < X(s) < b \}
\]
Cumulative Distribution Functions

Definition

Let X be a real-valued random variable on the probability space (Ω, \mathcal{F}, P). Then the cumulative distribution function (cdf) of X is defined as

$$F_X(x) = P(X < x)$$
Properties of CDFs

Let X be a real-valued random variable. Then F_X has the following properties:

1. F_X is monotonic increasing.
2. F_X is right-continuous, that is,

 \[\lim_{\epsilon \to 0^+} F_X(x + \epsilon) = F_X(x), \quad \text{for all } x \in \mathbb{R}. \]

3. $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$.
Probability Mass Functions (Discrete)

Definition

The **probability mass function** (pmf) for a discrete real-valued random variable X, denoted f_X, is defined as

$$ f_X(x) = P(X = x). $$

The cdf can be defined in terms of the pmf as

$$ F_X(x) = P(X \leq x) = \sum_{k \leq x} f_X(k). $$
Probability Density Functions (Continuous)

Definition

The **probability density function** (pdf) for a continuous real-valued random variable X, denoted f_X, is defined as

$$f_X(x) = \frac{d}{dx}F_X(x),$$

when this derivative exists.

The cdf can be defined in terms of the pdf as

$$F_X(x) = P(X \leq x) = \int_{-\infty}^{x} f_X(t) dt.$$
Example: Uniform Distribution

\[X \sim \text{Unif}(0, 1) \]

“\(X \) is uniformly distributed between 0 and 1.”

\[
f_X(x) = \begin{cases}
 1 & 0 \leq x \leq 1 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
F_X(x) = \begin{cases}
 0 & x < 0 \\
 x & 0 \leq x \leq 1 \\
 1 & x > 1
\end{cases}
\]
Joint Distributions

Recall that given two events A, B, we can talk about the intersection of the two events $A \cap B$ and the probability $P(A \cap B)$ of both events happening.

Given two random variables, X, Y, we can also talk about the intersection of the events these variables define. The distribution defined this way is called the joint distribution:

$$F_{X,Y}(x, y) = P(X \leq x; Y \leq y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(s, t) \, ds \, dt.$$
Marginal Distributions

Definition

Given a joint probability density \(f_{X,Y} \), the **marginal densities** of \(X \) and \(Y \) are given by

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy, \quad \text{and} \quad \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx.
\]
Conditional Densities

Definition

If X, Y are random variables with joint density $f_{X,Y}$, then the conditional density of X given $Y = y$ is

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x, y)}{f_Y(y)}.$$
Independent Random Variables

Definition

Two random variables X, Y are called **independent** if

$$f_{X,Y}(x, y) = f_X(x)f_Y(y).$$

If we integrate (or sum) both sides, we see this is equivalent to

$$F_{X,Y}(x, y) = F_X(x)F_Y(y).$$
The expectation of a random variable X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

This is the “mean” value of X, also denoted $\mu_X = E[X]$.

Definition

The **expectation** of a random variable X is
Linearity of Expectation

If X and Y are random variables, and $a, b \in \mathbb{R}$, then

$$E[aX + bY] = aE[X] + bE[Y].$$

This extends the several random variables X_i and constants a_i:

$$E \left[\sum_{i=1}^{N} a_i X_i \right] = \sum_{i=1}^{N} a_i E[X_i].$$
Variance

The **variance** of a random variable X is defined as

$$\text{Var}(X) = E[(X - \mu_X)^2].$$

- This formula is equivalent to
 $$\text{Var}(X) = E[X^2] - \mu_X^2.$$
- The variance is a measure of the “spread” of the distribution.
- The **standard deviation** is the sqrt of variance:
 $$\sigma_X = \sqrt{\text{Var}(X)}.$$
Example: Normal Distribution

\[X \sim N(\mu, \sigma) \]

"X is normally distributed with mean \(\mu \) and standard deviation \(\sigma \)."

\[
f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)
\]

\[
F_X(x) = \int_{-\infty}^{x} f_X(t) \, dt
\]
Expectation of the Product of Two RVs

We can take the expected value of the product of two random variables, X and Y:

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x, y) \, dx \, dy.$$
Covariance

Definition

The **covariance** of two random variables X and Y is

$$
\text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X\mu_Y.
$$

This is a measure of how much the variables X and Y “change together”.

We’ll also write $\sigma_{XY} = \text{Cov}(X, Y)$.

The **correlation** of two random variables X and Y is

$$\rho(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y},$$

or

$$\rho(X, Y) = E \left[\left(\frac{X - \mu_X}{\sigma_X} \right) \left(\frac{Y - \mu_Y}{\sigma_Y} \right) \right].$$

Correlation normalizes the covariance between $[-1, 1]$.
Independent RVs are Uncorrelated

If X and Y are two independent RVs, then

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x, y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x)f_Y(y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} x f_X(x) dx \int_{-\infty}^{\infty} y f_Y(y) dy$$

$$= E[X]E[Y] = \mu_X \mu_Y$$

So, $\sigma_{XY} = E[XY] - \mu_X \mu_Y = 0$.
More on Independence and Correlation

Warning: Independence implies uncorrelation, but uncorrelated variables are not necessarily independent!