The Electromagnetic Spectrum and Images

We are familiar with visual light images (photographs), but images can be made from almost any form of EM radiation.

From Wikipedia
Types of Images

- Radar imaging (radio waves)
- Magnetic Resonance Imaging (uses radio waves)
- Microwave imaging
- Infrared imaging
- Photographs
- Ultraviolet imaging telescopes
- X-rays and Computed Tomography
- Positron emission tomography (gamma rays)
- Ultrasound (not EM waves)
The Pinhole Camera
Projective Geometry of the Pinhole Camera

Gives a relationship between coordinates in the 3D world, X, Y, Z, and the corresponding coordinates to which they are projected onto the imaging plane, x, y. Depends on the focal length, f.

$$x = -\frac{f}{Z} X, \quad y = -\frac{f}{Z} Y$$
Camera Obscura

- Uses a pinhole camera to project image into a dark box or room
- In Latin “Camera” = room, “Obscura” = dark
- Pinhole camera first described by the ancient Chinese and Greeks (roughly 400-300 BC)
- First working camera obscura built by Ibn al-Haytham (around 1000 AD)
The Thin Lens
Images as Functions

We can think of the intensity of light falling on the imaging plane as a function of position on that plane.

Let $\Omega \subset \mathbb{R}^2$ be the image domain. Then an image is a function

$$I : \Omega \rightarrow \mathbb{R}$$

This is an idealistic mathematical model of an image.
Images as Functions: Example

A simple image

Image function as a height field
Spatial Sampling

We cannot record (or store) a continuum of values on the imaging plane. So, a finite number of sensors are arranged in a grid.
Spatial Sampling

We can think of spatial sampling as multiplication of a continuous signal with a comb function.
Quantization

We also have to discretize the output intensity $I(u, v)$ to store digitally. This is an analog-to-digital conversion.
Images as Discrete Functions

After spatial sampling and quantization, an image is a discrete function. The image domain Ω is now discrete:

$$\Omega \subset \mathbb{N}^2,$$

and so is the image range:

$$I : \Omega \rightarrow \{1, \ldots, K\},$$

where $K \in \mathbb{N}$.
Representing an Image

The data structure for an image is simply a 2D array of values. The values in the array can be any datatype (bit, byte, int, float, double, etc.)