What is Probability and Statistics and Why Should You Care?

CS 3130: Probability and Statistics for Engineers

August 25, 2015
What is Probability?

Definition
Probability theory is the study of the mathematical rules that govern random events. But what is randomness? Informally, a random event is an event in which we do not know the outcome without observing it. Probability tells us what we can say about such events, given our assumptions about the possible outcomes.
What is Probability?

Definition

Probability theory is the study of the mathematical rules that govern random events.
What is Probability?

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?
What is Probability?

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?

Informally, a *random event* is an event in which we do not know the outcome without observing it.
What is Probability?

Definition

Probability theory is the study of the mathematical rules that govern random events.

But what is randomness?

Informally, a **random event** is an event in which we do not know the outcome without observing it.

Probability tells us what we can say about such events, given our assumptions about the possible outcomes.
What is Statistics?

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

1. Design experiments
2. Summarize data
3. Make conclusions about the world
4. Explore complex data
Statistics is the application of probability to the collection, analysis, and description of random data.
What is Statistics?

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- **Design** experiments
What is Statistics?

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- **Design** experiments
- **Summarize** data
What is Statistics?

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- **Design** experiments
- **Summarize** data
- **Make conclusions** about the world
What is Statistics?

Definition

Statistics is the application of probability to the collection, analysis, and description of random data.

Statistics is used to:

- **Design** experiments
- **Summarize** data
- **Make conclusions** about the world
- **Explore** complex data
Applications of Probability and Statistics

Computer Science: Electrical Engineering:

- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science: Electrical Engineering:

 - Machine Learning
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science: Electrical Engineering:

- Machine Learning
- Data Mining
- Simulation

- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Instrumentation, Sensors
- Hardware/Electronics
- Testing
- Control Theory
- Information Theory
- Telecommunications
- Signal Processing
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Telecommunications
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
Applications of Probability and Statistics

Computer Science:
- Machine Learning
- Data Mining
- Simulation
- Image Processing
- Computer Vision
- Computer Graphics
- Visualization
- Software Testing
- Algorithms

Electrical Engineering:
- Signal Processing
- Telecommunications
- Information Theory
- Control Theory
- Instrumentation, Sensors
- Hardware/Electronics Testing
Applications of Probability and Statistics

General:

- Gambling
Applications of Probability and Statistics

General:

- Gambling (not recommended)
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
- Politics
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
Applications of Probability and Statistics

General:
- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine
- Economics
Applications of Probability and Statistics

General:

- Gambling (not recommended)
- Stock Market Analysis
- Politics
- Sports
- Demographics
- Medicine
- Economics
- All Sciences!!
Alan Turing: Connecting CS and Probability

- "Father of Computer Science"

Wrote a dissertation on probability theory! Turing used probability and statistics to crack Enigma.
Alan Turing: Connecting CS and Probability

- “Father of Computer Science”
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis
Alan Turing: Connecting CS and Probability

- “Father of Computer Science”
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis
- Wrote a dissertation on probability theory!
Alan Turing: Connecting CS and Probability

- “Father of Computer Science”
- Most famous for:
 - Computability, Turing machine
 - Stored-program computer
 - Turing test
 - WWII cryptanalysis
- Wrote a dissertation on probability theory!
- Turing used probability and statistics to crack Enigma
Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.
Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Examples:
- Classification (recognition of faces or handwriting)
Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Examples:

- Classification (recognition of faces or handwriting)
- Prediction (stock market, elections)
Application: Machine Learning

Machine Learning builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Examples:

- Classification (recognition of faces or handwriting)
- Prediction (stock market, elections)
- Data mining
Application: Randomized Algorithms

Some algorithms benefit from using random steps rather than deterministic ones.

Example: primality testing

Testing for all possible divisors is slow for large numbers. Instead test a random selection of divisors. Can be confident of primality up to a certain degree.

Example: stochastic optimization methods

Optimizations can get “stuck” in the wrong answer, depending on how they are initialized. Re-run the algorithm with several random initializations.
Application: Randomized Algorithms

- Some algorithms benefit from using random steps rather than deterministic ones
Application: Randomized Algorithms

- Some algorithms benefit from using random steps rather than deterministic ones
- Example: primality testing
 - Testing for all possible divisors is slow for large numbers
 - Instead test a random selection of divisors
 - Can be confident of primality up to a certain degree
Application: Randomized Algorithms

- Some algorithms benefit from using random steps rather than deterministic ones
- Example: primality testing
 - Testing for all possible divisors is slow for large numbers
 - Instead test a random selection of divisors
 - Can be confident of primality up to a certain degree
- Example: stochastic optimization methods
 - Optimizations can get “stuck” in the wrong answer, depending on how they are initialized
 - Re-run the algorithm with several random initializations
Application: Computer Graphics

- Ray tracing models light photons bouncing around a scene
- Impossible to model every photon
- Monte Carlo ray tracing simulates a random selection of photons

Image by Steve Parker (U of U)
Application: Visualization

- Scientific data contains uncertainty

Johnson and Sanderson, IEEE Comp. Graph. and App., 2003
Application: Visualization

- Scientific data contains uncertainty
- Visualizations can be misleading as to “truth”

Johnson and Sanderson, IEEE Comp. Graph. and App., 2003
Application: Visualization

- Scientific data contains uncertainty
- Visualizations can be misleading as to “truth”
- Current research focuses on how to visualize uncertainty

Johnson and Sanderson, IEEE Comp. Graph. and App., 2003
Application: Medical Image Analysis

- Must deal with noisy image data

Fletcher et al, NeuroImage, 2010
Application: Medical Image Analysis

- Must deal with noisy image data
- Example: finding an anatomical structure in a 3D image

Fletcher et al, NeuroImage, 2010
Application: Medical Image Analysis

- Must deal with noisy image data
- Example: finding an anatomical structure in a 3D image
- Often includes statistical analysis of resulting data

Fletcher et al, NeuroImage, 2010
“Big Data” and “Analytics”

- The amount of digital data is exploding!

Source: IDC/EMC Digital Universe Study
“Big Data” and “Analytics”

- The amount of digital data is exploding!
- Big data analysis is statistics on steroids.

Source: IDC/EMC Digital Universe Study
“Big Data” and “Analytics”

- The amount of digital data is exploding!
- Big data analysis is statistics on steroids.
- Examples: social media, internet purchases, news articles, scientific data, medical data

Source: IDC/EMC Digital Universe Study
Every two days we create as much data as we did from the beginning of mankind until 2003!

Sources: Lesk, Berkeley SIMS, Landauer, EMC, TechCrunch, Smart Planet
(slide by Chris Johnson)
How Much is an Exabyte?

1 Exabyte = 1000 Petabytes = could hold approximately 500,000,000,000,000 pages of standard printed text

It takes one tree to produce 94,200 pages of a book

Thus it will take 530,785,562,327 trees to store an Exabyte of data

In 2005, there were 400,246,300,201 trees on Earth

We can store .75 Exabytes of data using all the trees on the entire planet.

The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
4. Design and run an experiment
5. Analyze the results

Experimental measurements are noisy (randomness). Statistics is critical in the last two steps!
The Scientific Method

1. Define the question
The Scientific Method

1. Define the question
2. Background research, observation

Experimental measurements are noisy (randomness). Statistics is critical in the last two steps!
The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
4. Design and run an experiment

Experimental measurements are noisy (randomness). Statistics is critical in the last two steps!
The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
4. Design and run an experiment
5. Analyze the results

Experimental measurements are noisy (randomness). Statistics is critical in the last two steps!
The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
4. Design and run an experiment
5. Analyze the results

Experimental measurements are noisy (randomness).
The Scientific Method

1. Define the question
2. Background research, observation
3. Formulate a hypothesis
4. Design and run an experiment
5. Analyze the results

Experimental measurements are noisy (randomness).

Statistics is critical in the last *two* steps!
What You Should Do Now

1. Check out the class web page
2. Sign up for the mailing list
3. Download the book
 (start reading Ch 1 & 2)
4. Download and install R on your machine
 (take a look at R tutorial)